190 research outputs found

    Random trees with superexponential branching weights

    Full text link
    We study rooted planar random trees with a probability distribution which is proportional to a product of weight factors wnw_n associated to the vertices of the tree and depending only on their individual degrees nn. We focus on the case when wnw_n grows faster than exponentially with nn. In this case the measures on trees of finite size NN converge weakly as NN tends to infinity to a measure which is concentrated on a single tree with one vertex of infinite degree. For explicit weight factors of the form wn=((n1)!)αw_n=((n-1)!)^\alpha with α>0\alpha >0 we obtain more refined results about the approach to the infinite volume limit.Comment: 19 page

    Random Networks Tossing Biased Coins

    Full text link
    In statistical mechanical investigations on complex networks, it is useful to employ random graphs ensembles as null models, to compare with experimental realizations. Motivated by transcription networks, we present here a simple way to generate an ensemble of random directed graphs with, asymptotically, scale-free outdegree and compact indegree. Entries in each row of the adjacency matrix are set to be zero or one according to the toss of a biased coin, with a chosen probability distribution for the biases. This defines a quick and simple algorithm, which yields good results already for graphs of size n ~ 100. Perhaps more importantly, many of the relevant observables are accessible analytically, improving upon previous estimates for similar graphs

    Splitting fields and general differential Galois theory

    Full text link
    An algebraic technique is presented that does not use results of model theory and makes it possible to construct a general Galois theory of arbitrary nonlinear systems of partial differential equations. The algebraic technique is based on the search for prime differential ideals of special form in tensor products of differential rings. The main results demonstrating the work of the technique obtained are the theorem on the constructedness of the differential closure and the general theorem on the Galois correspondence for normal extensions..Comment: 33 pages, this version coincides with the published on

    The differential-algebraic and bi-Hamiltonian integrability analysis of the Riemann type hierarchy revisited

    Full text link
    A differential-algebraic approach to studying the Lax type integrability of the generalized Riemann type hydrodynamic hierarchy is revisited, its new Lax type representation and Poisson structures constructed in exact form. The related bi-Hamiltonian integrability and compatible Poissonian structures of the generalized Riemann type hierarchy are also discussed.Comment: 18 page

    The conditional maximum of Poisson random variables

    Get PDF
    © 2017 Taylor & Francis Group, LLC The conditional maxima of independent Poisson random variables are studied. A triangular array of row-wise independent Poisson random variables is considered. If condition is given for the row-wise sums, then the limiting distribution of the row-wise maxima is concentrated onto two points. The result is in accordance with the classical result of Anderson. The case of general power series distributions is also covered. The model studied in Theorems 2.1 and 2.2 is an analogue of the generalized allocation scheme. It can be considered as a non homogeneous generalized scheme of allocations of at most n balls into N boxes. Then the maximal value of the contents of the boxes is studied

    A Bose-Einstein Approach to the Random Partitioning of an Integer

    Full text link
    Consider N equally-spaced points on a circle of circumference N. Choose at random n points out of NN on this circle and append clockwise an arc of integral length k to each such point. The resulting random set is made of a random number of connected components. Questions such as the evaluation of the probability of random covering and parking configurations, number and length of the gaps are addressed. They are the discrete versions of similar problems raised in the continuum. For each value of k, asymptotic results are presented when n,N both go to infinity according to two different regimes. This model may equivalently be viewed as a random partitioning problem of N items into n recipients. A grand-canonical balls in boxes approach is also supplied, giving some insight into the multiplicities of the box filling amounts or spacings. The latter model is a k-nearest neighbor random graph with N vertices and kn edges. We shall also briefly consider the covering problem in the context of a random graph model with N vertices and n (out-degree 1) edges whose endpoints are no more bound to be neighbors

    Zero Order Estimates for Analytic Functions

    Full text link
    The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in the case of functional systems for an important unconditional result of Nesterenko (1977) concerning linear differential systems. In summary, we provide a new universal tool for transcendental number theory, applicable with fields of any characteristic. It opens the way to new results on algebraic independence, as shown in Zorin (2010).Comment: 42 page

    Complexity transitions in global algorithms for sparse linear systems over finite fields

    Full text link
    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois Field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to changes in performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary to the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.Comment: 23 pages, 8 figure

    The Schro¨\ddot{o}dinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics

    Get PDF
    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schro¨\ddot{o}dinger-Poisson equations in the large NN limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as M5/3G1/2(N/)1/6\hbar \sim M^{5/3} G^{1/2} (N/)^{1/6}, where is GG the gravitational constant, NN and MM are the number and the mass of the bodies, and is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schro¨\ddot{o}dinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.

    Differential-Algebraic Integrability Analysis of the Generalized Riemann Type and Korteweg-de Vries Hydrodynamical Equations

    Full text link
    A differential-algebraic approach to studying the Lax type integrability of the generalized Riemann type hydrodynamic equations at N = 3; 4 is devised. The approach is also applied to studying the Lax type integrability of the well known Korteweg-de Vries dynamical system.Comment: 11 page
    corecore